Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A typical classroom exercise in hydrogeology is to develop a conceptual model of a contaminated site, identify groundwater flow direction(s), and predict the location and mass of a contaminant plume. This requires knowledge of key hydrogeological concepts and is highly visuospatial in nature. Among multiple discrete spatial thinking skills identified by cognitive science, the combination of visual penetrative ability and working in multiple frames of reference were identified to significantly predict performance on a hydrogeology task and showed that together with hydrogeology knowledge, these spatial thinking skills account for 49% of the variability on task performance. Seventy-two hydrogeology practitioners and students with varying levels of expertise were administered multiple spatial thinking tests and an assessment of hydrogeology knowledge before completing a hydrogeology task that was developed for the study. Using spatial thinking and knowledge test scores as predictor variables, a hierarchical regression analysis was conducted with performance on the hydrogeology task as the outcome variable. The resulting model predicts that at low levels of hydrogeology knowledge, the identified spatial thinking skills account for more than a 25% difference on the hydrogeology task. This study provides empirical evidence that visual penetrative ability and working in multiple frames of reference are important skills in hydrogeology; thus, instructors are encouraged to recognize that underdeveloped spatial thinking skills could present hurdles for students and that targeted spatial thinking training may yield positive results for both weak and strong spatial thinkers.more » « lessFree, publicly-accessible full text available December 1, 2025
-
The crystal structures of three β-halolactic acids have been determined, namely, β-chlorolactic acid (systematic name: 3-chloro-2-hydroxypropanoic acid, C 3 H 5 ClO 3 ) (I), β-bromolactic acid (systematic name: 3-bromo-2-hydroxypropanoic acid, C 3 H 5 BrO 3 ) (II), and β-iodolactic acid (systematic name: 2-hydroxy-3-iodopropanoic acid, C 3 H 5 IO 3 ) (III). The number of molecules in the asymmetric unit of each crystal structure ( Z ′) was found to be two for I and II, and one for III, making I and II isostructural and III unique. The difference between the molecules in the asymmetric units of I and II is due to the direction of the hydrogen bond of the alcohol group to a neighboring molecule. Molecular packing shows that each structure has alternating layers of intermolecular hydrogen bonding and halogen–halogen interactions. Hirshfeld surfaces and two-dimensional fingerprint plots were analyzed to further explore the intermolecular interactions of these structures. In I and II, energy minimization is achieved by lowering of the symmetry to adopt two independent molecular conformations in the asymmetric unit.more » « less
-
Abstract Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) ofCaenorhabditis elegans, PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis.more » « less
-
Abstract If the material intensive enterprises in an urban area of several million people shared physical resources that might otherwise be wasted, what environmental and public benefits would result? This study develops an algorithm based on lifecycle assessment tools for determining a city’sindustrial symbiosis potential—that is, the sum of the wastes and byproducts from a city’s industrial enterprises that could reasonably serve as resource inputs to other local industrial processes. Rather than report, as do many previous papers, on private benefits to firms, this investigation focuses on public benefits to cities by converting the maximum quantity of resources recoverable by local enterprises into an estimate of the capacity of municipal infrastructure conserved in terms of landfill space and water demand. The results here test this novel approach for the district of Mysuru (Mysore), India. We find that the industrial symbiosis potential calculated based on analysis of the inputs and outputs of ∼1000 urban enterprises, translates into 84 000 tons of industrial waste, greater than 74 000 tons of CO2e, and 22 million liters per day of wastewater. The method introduced here demonstrates how industrial symbiosis links private production and public infrastructure to improve the resource efficiency of a city by creating an opportunity to extend the capacity of public infrastructure and generate public health co-benefits.more » « less
An official website of the United States government
